Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes

心肌细胞中 SK 通道、L 型 Ca2+ 通道和瑞诺丁受体的偶联

阅读:6
作者:Xiao-Dong Zhang, Zana A Coulibaly, Wei Chun Chen, Hannah A Ledford, Jeong Han Lee, Padmini Sirish, Gu Dai, Zhong Jian, Frank Chuang, Ingrid Brust-Mascher, Ebenezer N Yamoah, Ye Chen-Izu, Leighton T Izu, Nipavan Chiamvimonvat

Abstract

Small-conductance Ca2+-activated K+ (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca2+ microdomains necessary for SK channel activation. SK currents coupled with Ca2+ influx via L-type Ca2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca2+ store, suggesting that LTCCs provide the immediate Ca2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Cav1.2 Ca2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Cav1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca2+ signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。