Coplanar polychlorinated biphenyl-induced CYP1A1 is regulated through caveolae signaling in vascular endothelial cells

共面多氯联苯诱导的 CYP1A1 通过血管内皮细胞中的小窝信号传导进行调节

阅读:6
作者:Eun Jin Lim, Zuzana Májková, Shifen Xu, Leonidas Bachas, Xabier Arzuaga, Eric Smart, Michael T Tseng, Michal Toborek, Bernhard Hennig

Abstract

Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that can induce inflammatory processes in the vascular endothelium. We hypothesize that the plasma membrane microdomains called caveolae are critical in endothelial activation and toxicity induced by PCBs. Caveolae are particularly abundant in endothelial cells and play a major role in endothelial trafficking and the regulation of signaling pathways associated with the pathology of vascular diseases. We focused on the role of caveolae and their major protein component, caveolin-1 (Cav-1), on aryl hydrocarbon receptor (AhR)-mediated induction of cytochrome P450 1A1 (CYP1A1) by coplanar PCBs. Endothelial cell exposure to PCB77 increased both caveolin-1 and CYP1A1 levels in a time-dependent manner in total cell lysates, with a maximum increase at 6h. Furthermore, PCB77 accumulated mainly in the caveolae-rich fraction, as determined by gas chromatograph-mass spectrometry. Immunoprecipitation analysis revealed that PCB77 increased AhR binding to caveolin-1. Silencing of caveolin-1 significantly attenuated PCB77-mediated induction of CYP1A1 and oxidative stress. Similar effects were observed in caveolin-1 null mice treated with PCB77. These data suggest that caveolae may play a role in regulating vascular toxicity induced by persistent environmental pollutants such as coplanar PCBs. This may have implications in understanding mechanisms of inflammatory diseases induced by environmental pollutants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。