Pneumococcal Neuraminidase Substrates Identified through Comparative Proteomics Enabled by Chemoselective Labeling

通过化学选择性标记的比较蛋白质组学鉴定肺炎球菌神经氨酸酶底物

阅读:5
作者:Janet E McCombs, Jennifer J Kohler

Abstract

Neuraminidases (sialidases) are enzymes that hydrolytically remove sialic acid from sialylated proteins and lipids. Neuraminidases are encoded by a range of human pathogens, including bacteria, viruses, fungi, and protozoa. Many pathogen neuraminidases are virulence factors, indicating that desialylation of host glycoconjugates can be a critical step in infection. Specifically, desialylation of host cell surface glycoproteins can enable these molecules to function as pathogen receptors or can alter signaling through the plasma membrane. Despite these critical effects, no unbiased approaches exist to identify glycoprotein substrates of neuraminidases. Here, we combine previously reported glycoproteomics methods with quantitative proteomics analysis to identify glycoproteins whose sialylation changes in response to neuraminidase treatment. The two glycoproteomics methods-periodate oxidation and aniline-catalyzed oxime ligation (PAL) and galactose oxidase and aniline-catalyzed oxime ligation (GAL)-rely on chemoselective labeling of sialylated and nonsialylated glycoproteins, respectively. We demonstrated the utility of the combined approaches by identifying substrates of two pneumococcal neuraminidases in a human cell line that models the blood-brain barrier. The methods deliver complementary lists of neuraminidase substrates, with GAL identifying a larger number of substrates than PAL (77 versus 17). Putative neuraminidase substrates were confirmed by other methods, establishing the validity of the approach. Among the identified substrates were host glycoproteins known to function in bacteria adherence and infection. Functional assays suggest that multiple desialylated cell surface glycoproteins may act together as pneumococcus receptors. Overall, this method will provide a powerful approach to identify glycoproteins that are desialylated by both purified neuraminidases and intact pathogens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。