FYVE domain-containing protein ZFYVE28 regulates EGFR-signaling in podocytes but is not critical for the function of filtration barrier in mice

含有 FYVE 结构域的蛋白质 ZFYVE28 调节足细胞中的 EGFR 信号传导,但对小鼠的过滤屏障功能并不重要

阅读:9
作者:Sonia Zambrano, Patricia Q Rodriguez, Jing Guo, Katja Möller-Hackbarth, Angelina Schwarz, Jaakko Patrakka

Abstract

The kidney ultrafiltration barrier is formed of endothelial cells, the glomerular basement membrane and podocytes. Podocytes have a central role in normal physiology and disease pathogenesis of the glomerulus. Signaling through epidermal growth factor receptor (EGFR) in podocytes mediates development of many glomerular disease processes. In this work, we have identified zinc finger FYVE-type containing 28 (ZFYVE28) as a novel highly podocyte-enriched gene. We localize ZFYVE28 in podocyte foot processes in adult kidney. During glomerulogenesis, Zfyve28 is first expressed at the early capillary loop glomerulus. In cultured podocytes, we show that overexpression of ZFYVE28 promotes EGF-signaling, possibly by up-regulating EGFR expression and by modulating its localization. To study the role of ZFYVE28 in vivo, we generated both conventional and podocyte-specific knockout mouse lines. Kidneys developed normally in ZFYVE28-deficient mice. In adult mice, the absence of ZFYVE28 did not affect the maintenance of the filtration barrier. Moreover, ZFYVE28-deficiency did not affect the outcome of glomerular damage induced by injection of nephrotoxic serum. Taken together, we have identified Zfyve28 as a new molecular component of podocyte foot processes and show that it mediates EGF-signaling in podocytes. However, ZFYVE28 is not essential for the development or maintenance of the glomerulus filtration barrier.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。