LINC00115 aggravates thyroid cancer progression by targeting miR-489-3p, which downregulates EVA1A to regulate the Hippo signaling pathway

LINC00115 通过靶向 miR-489-3p 加剧甲状腺癌进展,从而下调 EVA1A 以调节 Hippo 信号通路

阅读:5
作者:Jie Cao, Wei Kong, Xiangli Xiao

Abstract

LINC00115 has been documented to regulate many different cancers; however, its function in thyroid cancer (THCA) remains unexplored. Therefore, we examined the effects of LINC00115 on THCA and the associated molecular mechanisms. In THCA cell lines and tumor samples, the expression levels of LINC00115, miR-489-3p, and EVA1A were analyzed by qRT-PCR along with respective controls. Cell viability, migration, and apoptosis were analyzed by employing CCK-8, transwell, and western blotting assays, respectively. Xenograft experiments were done to assess in vivo tumor growth. The interaction among LINC00115, miR-489-3p, and EVA1A was tested using RNA-binding protein immunoprecipitation and luciferase assays. Key proteins of the Hippo signaling pathway were ascertained by western blotting. The outcomes elucidated that LINC00115 was overexpressed in THCA cell lines and tumor tissues. LIN00115 knockdown reduced in vitro proliferation and migration but facilitated apoptosis in THCA cells and inhibited in vivo tumor growth. The target of LINC00115 was miR-489-3p, which binds to EVA1A in THCA. Functional assays revealed that miR-489-3p inhibition boosted THCA cell proliferation and migration, but hindered apoptosis. However, EVA1A knockdown resulted in the opposite effects via the Hippo signaling pathway. Additionally, miR-489-3p inhibition partially negated the effects of LINC00115 knockdown in THCA cells, and EVA1A knockdown remarkably impeded the effects of miR-489-3p inhibition in THCA cells. Thus, LINC00115 knockdown suppressed THCA carcinogenesis via targeting miR-489-3p, which regulates EVA1A expression and affects the Hippo signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。