Semaphorin 4C regulates ovarian steroidogenesis through RHOA/ROCK1-mediated actin cytoskeleton rearrangement

Semaphorin 4C 通过 RHOA/ROCK1 介导的肌动蛋白细胞骨架重排调节卵巢类固醇生成

阅读:5
作者:Dan Chen, Chuqing Wu, Simin Wei, Yican Guo, Meng Wu, Su Zhou, Fangfang Fu, Weicheng Tang, Liru Xue, Jinjin Zhang, Yan Li, Jun Dai, Yuanyuan Li, Shuangmei Ye, Shixuan Wang

Abstract

Semaphorins are a family of evolutionarily conserved morphogenetic molecules that were initially found to be associated with axonal guidance. Semaphorin 4C (Sema4C), a member of the fourth subfamily of semaphorins, has been demonstrated to play multifaceted and important roles in organ development, immune regulation, tumor growth, and metastasis. However, it is completely unknown whether Sema4C is involved in the regulation of ovarian function. We found that Sema4C was widely expressed in the stroma, follicles, and corpus luteum of mouse ovaries, and its expression was decreased at distinct foci in ovaries of mice of mid-to-advanced reproductive age. Inhibition of Sema4C by the ovarian intrabursal administration of recombinant adeno-associated virus-shRNA significantly reduced oestradiol, progesterone, and testosterone levels in vivo. Transcriptome sequencing analysis showed changes in pathways related to ovarian steroidogenesis and the actin cytoskeleton. Similarly, knockdown of Sema4C by siRNA interference in mouse primary ovarian granulosa cells or thecal interstitial cells significantly suppressed ovarian steroidogenesis and led to actin cytoskeleton disorganization. Importantly, the cytoskeleton-related pathway RHOA/ROCK1 was simultaneously inhibited after the downregulation of Sema4C. Furthermore, treatment with a ROCK1 agonist after siRNA interference stabilized the actin cytoskeleton and reversed the inhibitory effect on steroid hormones described above. In conclusion, Sema4C may play an important role in ovarian steroidogenesis through regulation of the actin cytoskeleton via the RHOA/ROCK1 signaling pathway. These findings shed new light on the identification of dominant factors involved in the endocrine physiology of female reproduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。