Skeletal inflammation and attenuation of Wnt signaling, Wnt ligand expression, and bone formation in atherosclerotic ApoE-null mice

动脉粥样硬化 ApoE 基因敲除小鼠的骨骼炎症和 Wnt 信号减弱、Wnt 配体表达和骨形成

阅读:6
作者:Yu Liu, Maria Almeida, Robert S Weinstein, Charles A O'Brien, Stavros C Manolagas, Robert L Jilka

Abstract

ApoE-null (ApoE-KO) mice fed a high-fat diet (HFD) develop atherosclerosis, due in part to activation of vascular inflammation by oxidized low-density lipoprotein. Since bone loss also occurs in these mice, we used them to investigate the impact of oxidized lipids on bone homeostasis and to search for underlying pathogenic pathways. Four-month-old female ApoE-KO mice fed a HFD for three months exhibited increased levels of oxidized lipids in bone, as well as decreased femoral and vertebral trabecular and cortical bone mass, compared with ApoE-KO mice on normal diet. Despite HFD-induced increase in expression of Alox15, a lipoxygenase that oxidizes LDL and promotes atherogenesis, global deletion of this gene failed to ameliorate the skeletal impact of HFD. Osteoblast number and function were dramatically reduced in trabecular and cortical bone of HFD-fed mice, whereas osteoclast number was modestly reduced only in trabecular bone, indicating that an imbalance in favor of osteoclasts was responsible for HFD-induced bone loss. These changes were associated with decreased osteoblast progenitors and increased monocyte/macrophages in the bone marrow as well as increased expression of IL-1β, IL-6, and TNF. HFD also attenuated Wnt signaling as evidenced by reduced expression of Wnt target genes, and it decreased expression of pro-osteoblastogenic Wnt ligands. These results suggest that oxidized lipids decrease bone mass by increasing anti-osteoblastogenic inflammatory cytokines and decreasing pro-osteoblastogenic Wnt ligands.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。