DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria

DHTKD1 突变导致 2-氨基己二酸和 2-氧代己二酸尿症

阅读:7
作者:Katharina Danhauser, Sven W Sauer, Tobias B Haack, Thomas Wieland, Christian Staufner, Elisabeth Graf, Johannes Zschocke, Tim M Strom, Thorsten Traub, Jürgen G Okun, Thomas Meitinger, Georg F Hoffmann, Holger Prokisch, Stefan Kölker

Abstract

Abnormalities in metabolite profiles are valuable indicators of underlying pathologic conditions at the molecular level. However, their interpretation relies on detailed knowledge of the pathways, enzymes, and genes involved. Identification and characterization of their physiological function are therefore crucial for our understanding of human disease: they can provide guidance for therapeutic intervention and help us to identify suitable biomarkers for monitoring associated disorders. We studied two individuals with 2-aminoadipic and 2-oxoadipic aciduria, a metabolic condition that is still unresolved at the molecular level. This disorder has been associated with varying neurological symptoms. Exome sequencing of a single affected individual revealed compound heterozygosity for an initiating methionine mutation (c.1A>G) and a missense mutation (c.2185G>A [p.Gly729Arg]) in DHTKD1. This gene codes for dehydrogenase E1 and transketolase domain-containing protein 1, which is part of a 2-oxoglutarate-dehydrogenase-complex-like protein. Sequence analysis of a second individual identified the same missense mutation together with a nonsense mutation (c.1228C>T [p.Arg410(∗)]) in DHTKD1. Increased levels of 2-oxoadipate in individual-derived fibroblasts normalized upon lentiviral expression of the wild-type DHTKD1 mRNA. Moreover, investigation of L-lysine metabolism showed an accumulation of deuterium-labeled 2-oxoadipate only in noncomplemented cells, demonstrating that DHTKD1 codes for the enzyme mediating the last unresolved step in the L-lysine-degradation pathway. All together, our results establish mutations in DHTKD1 as a cause of human 2-aminoadipic and 2-oxoadipic aciduria via impaired turnover of decarboxylation 2-oxoadipate to glutaryl-CoA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。