Generation of human umbilical cord vein CD146+ perivascular cell origined three-dimensional vascular construct

人脐静脉CD146+血管周围细胞来源的三维血管构建体的建立

阅读:6
作者:Beyza Gökçinar-Yagci, Nilgün Yersal, Petek Korkusuz, Betül Çelebi-Saltik

Abstract

Small-diameter vascular grafts are needed for the treatment of coronary artery diseases in the case of limited accessibility of the autologous vessels. Synthetic scaffolds have many disadvantages so in recent years vascular constructs (VCs) made from cellularized natural scaffolds was seen to be very promising but number of studies comprising this area is very limited. In our study, our aim is to generate fully natural triple-layered VC that constitutes all the layers of blood vessel with vascular cells. CD146+ perivascular cells (PCs) were isolated from human umbilical cord vein (HUCV) and differentiated into smooth muscle cells (SMCs) and fibroblasts. They were then combined with collagen type I/elastin/dermatan sulfate and collagen type I/fibrin to form tunica media and tunica adventitia respectively. HUCV endothelial cells (ECs) were seeded on the construct by cell sheet engineering method after fibronectin and heparin coating. Characterization of the VC was performed by immunolabeling, histochemical staining and electron microscopy (SEM and TEM). Differentiated cells were identified by means of immunofluorescent (IF) labeling. SEM and TEM analysis of VCs revealed the presence of three histologic tunicae. Collagen and elastic fibers were observed within the ECM by histochemical staining. The vascular endothelial growth factor receptor expressing ECs in tunica intima; α-SMA expressing SMCs in tunica media and; the tenascin expressing fibroblasts in tunica adventitia were detected by IF labeling. In conclusion, by combining natural scaffolds and vascular cells differentiated from CD146+ PCs, VCs can be generated layer by layer. This study will provide a preliminary blood vessel model for generation of fully natural small-diameter vascular grafts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。