OIP5-AS1 facilitates Th17 differentiation and EAE severity by targeting miR-140-5p to regulate RhoA/ROCK2 signaling pathway

OIP5-AS1 通过靶向 miR-140-5p 调节 RhoA/ROCK2 信号通路来促进 Th17 分化和 EAE 严重程度

阅读:5
作者:Ruihua Liu, Yan Li, Haitao Zhou, Hao Wang, Dequan Liu, Huilin Wang, Zhenghua Wang

Aims

Multiple sclerosis (MS) is one of the commonest neurologic disorders globally. LncRNA OIP5-AS1 has been found to be implicated in the etiology of MS. This study was to explore the roles and molecular mechanisms of OIP5-AS1 in the development of MS. Materials and

Methods

RT-qPCR assay was used to measure expressions of OIP5-AS1, miR-140-5p, IL-17A mRNA and RhoA mRNA. CD4+IL-17+ cell proportion was determined by flow cytometry. IL-17A secretion was examined by ELISA assay. Cell inflammatory infiltration and demyelination were assessed by histological analyses. The interaction between miR-140-5p and OIP5-AS1 or RhoA 3'UTR was validated by bioinformatical analysis and luciferase reporter assay. Western blot assay was performed to detect protein expressions of ROCK2 and RhoA. An experimental autoimmune encephalomyelitis (EAE) models was established to explore the role of OIP5-AS1 in MS in vivo. Key findings: OIP5-AS1 expression was enhanced in MS patients. Also, elevated OIP5-AS1 level was observed during T-helper 17 (Th17) differentiation. Moreover, OIP5-AS1 promoted Th17 differentiation in vitro and contributed to the development of EAE in vivo. Mechanical explorations revealed that OIP5-AS1 targeted miR-140-5p to regulate Th17 differentiation. Moreover, RhoA was a target of miR-140-5p and miR-140-5p inhibited the activation of RhoA/ROCK2 signaling. Also, RhoA upregulation abrogated the inhibitory effects of miR-140-5p on Th17 differentiation. Significance: OIP5-AS1 contributed to EAE development by targeting miR-140-5p/RhoA and activating RhoA/ROCK2 signaling pathway, shedding light on the roles and molecular mechanisms of OIP5-AS1 in the development of MS and providing some candidate targets for the diagnose and treatment of MS.

Significance

OIP5-AS1 contributed to EAE development by targeting miR-140-5p/RhoA and activating RhoA/ROCK2 signaling pathway, shedding light on the roles and molecular mechanisms of OIP5-AS1 in the development of MS and providing some candidate targets for the diagnose and treatment of MS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。