PD-L1 mediates lung fibroblast to myofibroblast transition through Smad3 and β-catenin signaling pathways

PD-L1 通过 Smad3 和 β-catenin 信号通路介导肺成纤维细胞向肌成纤维细胞的转变

阅读:6
作者:Xia Guo #, Christudas Sunil #, Oluwaseun Adeyanju, Andrew Parker, Steven Huang, Mitsuo Ikebe, Torry A Tucker, Steven Idell, Guoqing Qian

Abstract

Programmed death ligand-1 (PD-L1) is an immune checkpoint protein that has been linked with idiopathic pulmonary fibrosis (IPF) and fibroblast to myofibroblast transition (FMT). However, it remains largely unclear how PD-L1 mediates this process. We found significantly increased PD-L1 in the lungs of idiopathic pulmonary fibrosis patients and mice with pulmonary fibrosis induced by bleomycin and TGF-β. In primary human lung fibroblasts (HLFs), TGF-β induced PD-L1 expression that is dependent on both Smad3 and p38 pathways. PD-L1 knockdown using siRNA significantly attenuated TGF-β-induced expression of myofibroblast markers α-SMA, collagen-1, and fibronectin in normal and IPF HLFs. Further, we found that PD-L1 interacts with Smad3, and TGF-β induces their interaction. Interestingly, PD-L1 knockdown reduced α-SMA reporter activity induced by TGF-β in HLFs, suggesting that PD-L1 might act as a co-factor of Smad3 to promote target gene expression. TGF-β treatment also phosphorylates GSK3β and upregulates β-catenin protein levels. Inhibiting β-catenin signaling with the pharmaceutical inhibitor ICG001 significantly attenuated TGF-β-induced FMT. PD-L1 knockdown also attenuated TGF-β-induced GSK3β phosphorylation/inhibition and β-catenin upregulation, implicating GSK3β/β-catenin signaling in PD-L1-mediated FMT. Collectively, our findings demonstrate that fibroblast PD-L1 may promote pulmonary fibrosis through both Smad3 and β-catenin signaling and may represent a novel interventional target for IPF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。