Pulsed frequency modulated ultrasound promotes therapeutic effects of osteoporosis induced by ovarian failure in mice

脉冲调频超声促进小鼠卵巢功能衰竭引起的骨质疏松症的治疗效果

阅读:6
作者:Xinyan Zhou, Shuxin Sun, Yuefu Chen, Chengcheng Liu, Dan Li, Qun Cheng, Min He, Ying Li, Kailiang Xu, Dean Ta

Abstract

Low-intensity pulsed ultrasound (LIPUS) has been proved to be an effective technique for the treatment of osteoporosis. To better activate the bone formation-related markers, promote the different stages of osteogenesis, and further enhance the therapeutic effects of ultrasound, this study employed pulsed frequency modulated ultrasound (pFMUS) to treat mice with osteoporosis, which was caused by ovarian failure due to 4-vinylcyclohexene dioxide (VCD) injection. Healthy 8-week-old female C57BL/6J mice were randomly divided into four groups: Sham (S), VCD-control (V), VCD + LIPUS (VU), and VCD + pFMUS (VFU). VU and VFU groups were treated by LIPUS and pFMUS, respectively. Serum analysis, micro-computed tomography (micro-CT), mechanical testing and hematoxylin and eosin (HE) staining were performed to evaluate the therapeutic effects of ultrasound. Quantitative reverse-transcription PCR (qRT-PCR) and western blot analysis were used to explore the mechanism of ultrasound on osteoporosis. Results showed that pFMUS might have better therapeutic effects than traditional LIPUS in terms of bone microstructure and bone strength. In addition, pFMUS could promote bone formation by activating phosphoinositide-3 kinase/protein kinase B (PI3K/Akt) pathway, and slow down bone resorption by increasing osteoprotegerin/receptor activator of nuclear factor κB ligand (OPG/RANKL) ratio. This study is of positive prognostic significance when understanding the mechanism of ultrasound regulation on osteoporosis and establishing novel treatment plan of osteoporosis by multi-frequency ultrasound.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。