Phosphodiesterase 4 Inhibitor Roflumilast Protects Rat Hippocampal Neurons from Sevoflurane Induced Injury via Modulation of MEK/ERK Signaling Pathway

磷酸二酯酶 4 抑制剂罗氟司特通过调节 MEK/ERK 信号通路保护大鼠海马神经元免受七氟烷诱导的损伤

阅读:5
作者:Sheng Peng, Hong-Zhu Yan, Pei-Rong Liu, Xiao-Wei Shi, Chun-Liang Liu, Qi Liu, Yu Zhang

Aims

Sevoflurane, a commonly used volatile anesthetic, recently has been found has neurotoxicity in the central nervous system of neonatal rodents. This study aimed to reveal whether phosphodiesterase 4 (PDE-4) inhibitor roflumilast has protective functions in sevoflurane-induced nerve damage.

Background/aims

Sevoflurane, a commonly used volatile anesthetic, recently has been found has neurotoxicity in the central nervous system of neonatal rodents. This study aimed to reveal whether phosphodiesterase 4 (PDE-4) inhibitor roflumilast has protective functions in sevoflurane-induced nerve damage.

Conclusion

To conclude, this study demonstrated a neuroprotective role of roflumilast in sevoflurane-induced nerve damage. Roflumilast promoted hippocampal neurons viability, and reduced apoptosis possibly via modulation of MEK/ERK signaling pathway.

Methods

Hippocampal neurons were isolated from juvenile rats, and were exposed to sevoflurane with or without roflumilast treatment. Cell viability and apoptosis were respectively assessed by CCK-8 and flow cytometry. Western blot analysis was performed to detect the protein expressions of apoptosis-related factors, and core factors in MEK/ERK and mTOR signaling pathways.

Results

Toxic effects of sevoflurane on hippocampal neurons were observed, as cell viability was reduced, apoptotic cell rate was increased, Bcl-2 was down-regulated, and Bax, cleaved caspase-3 and -9 were up-regulated after 1% sevoflurane exposure for 16 h. Sevoflurane exhibited a temporarily (less than 16 h) inhibitory effect on MEK/ERK pathway, but has no impact on mTOR pathway. Roflumilast promoted the release of cAMP and down-regulated the protein expression of PDE-4. Roflumilast (1 µM) alone has no impact on viability and apoptosis of hippocampal neurons. However, roflumilast increased cell viability and deceased apoptosis in sevoflurane-injured neurons. Besides, roflumilast could recover sevoflurane-induced deactivation of MEK/ERK pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。