Nitrovin (difurazone), an antibacterial growth promoter, induces ROS-mediated paraptosis-like cell death by targeting thioredoxin reductase 1 (TrxR1)

Nitrovin(二呋嗪酮)是一种抗菌生长促进剂,通过靶向硫氧还蛋白还原酶 1 (TrxR1) 诱导 ROS 介导的副凋亡样细胞死亡

阅读:6
作者:Lin Zhao, Bingling Zhong, Yanyan Zhu, Haoyi Zheng, Xumei Wang, Ying Hou, Jin-Jian Lu, Nana Ai, Xiuli Guo, Wei Ge, Yan-Yan Ma, Xiuping Chen

Abstract

Glioblastoma multiforme (GBM) is one of the most lethal malignant tumors in the human brain, with only a few chemotherapeutic drugs available after surgery. Nitrovin (difurazone) is widely used as an antibacterial growth promoter in livestock. Here, we reported that nitrovin might be a potential anticancer lead. Nitrovin showed significant cytotoxicity to a panel of cancer cell lines. Nitrovin induced cytoplasmic vacuolation, reactive oxygen species (ROS) generation, MAPK activation, and Alix inhibition but had no effect on caspase-3 cleavage and activity, suggesting paraptosis activation. Nitrovin-induced cell death of GBM cells was significantly reversed by cycloheximide (CHX), N-acetyl-l-cysteine (NAC), glutathione (GSH), and thioredoxin reductase 1 (TrxR1) overexpression. Vitamins C and E, inhibitors of pan-caspase, MAPKs, and endoplasmic reticulum (ER) stress failed to do so. Nitrovin-triggered cytoplasmic vacuolation was reversed by CHX, NAC, GSH, and TrxR1 overexpression but not by Alix overexpression. Furthermore, nitrovin interacted with TrxR1 and significantly inhibited its activity. In addition, nitrovin showed a significant anticancer effect in a zebrafish xenograft model, which was reversed by NAC. In conclusion, our results showed that nitrovin induced non-apoptotic and paraptosis-like cell death mediated by ROS through targeting TrxR1. Nitrovin might be a promising anticancer lead for further development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。