Role of mitochondrial depolarization and disrupted mitochondrial homeostasis in non-alcoholic steatohepatitis and fibrosis in mice

线粒体去极化和线粒体稳态破坏在小鼠非酒精性脂肪性肝炎和纤维化中的作用

阅读:6
作者:Yasodha Krishnasamy, Monika Gooz, Li Li, John J Lemasters, Zhi Zhong

Abstract

The pathogenesis of non-alcoholic steatohepatitis (NASH) is poorly understood. Here, relationships between mitochondrial depolarization (mtDepo) and mitochondrial homeostasis were studied in a mouse model of NASH. C57BL/6 mice were fed a Western diet (high fat, fructose and cholesterol) for 2 weeks, 2 months and 6 months, and livers were harvested for histology and biochemical analysis. Hepatic mtDepo was evaluated by intravital multiphoton microscopy. After Western diet feeding, mixed hepatic micro- and macrovesicular steatosis and leukocyte infiltration occurred at 2 weeks and continued to increase afterwards. ALT release, mild necrosis, apoptosis, and ballooning degeneration were present at 2 and 6 months. Smooth muscle α-actin expression increased at 2 weeks and longer, and increased collagen-I expression and mild fibrosis occurred at 6 months. After feeding Western diet for 2 weeks and longer, mtDepo appeared in 50-70% hepatocytes, indicating mitochondrial dysfunction at an early stage of NASH. mtDepo can initiate mitophagy, and mitophagic markers increased at 2 and 6 months. Concurrently autophagic processing became impaired. Oxidative phosphorylation proteins, mitochondrial biogenesis signals, and proteins associated with mitochondrial fission and fusion decreased after 2 months and longer of Western diet. Proinflammatory and profibrotic signaling (NLRP3 inflammasome activation, expression of IL-1, osteopontin and TGF-β1) also increased in association with mitochondrial stress/dysfunction after Western diet feeding. Taken together, we show that hepatic mtDepo occurs early in mice fed a Western diet, followed by increased mitophagic burden, suppressed mitochondrial biogenesis and dynamics, and mitochondrial depletion. These novel mitochondrial alterations in NASH most likely play an important role in promoting steatosis, inflammation, and progression to fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。