Electroacupuncture improves gastrointestinal motility through a central-cholinergic pathway-mediated GDNF releasing from intestinal glial cells to protect intestinal neurons in Parkinson's disease rats

电针通过中枢胆碱能通路介导肠神经胶质细胞释放GDNF改善胃肠运动,保护帕金森病大鼠的肠道神经元

阅读:5
作者:Can Zhang, Tan Chen, Mingwei Fan, Jinlan Tian, Shuhui Zhang, Zijian Zhao, Xinru Liu, Huaiyuan Ma, Lijuan Yang, Yan Chen

Abstract

Constipation symptoms of Parkinson's disease (PD) seriously reduce the quality of life of patients and aggravate the development of the disease, but current treatment options still cannot alleviate the progress of constipation. Electroacupuncture (EA) is a new method for the treatment of constipation, which can effectively treat the symptoms of constipation in PD patients. However, the specific regulatory mechanisms of EA in the treatment of constipation symptoms in PD remain unclear. The aim of this study is to investigate the therapeutic effect of EA on PD constipation rats and its regulatory mechanism. A rotenone (ROT)-induced gastrointestinal motility disorder model was used to simulate the pathological process of constipation in PD. The results showed that EA could effectively promote gastrointestinal peristalsis, reduce α-synuclein accumulation in substantia nigra and colon and colonic injury in rats after ROT administration. Mechanistically, EA activation of the central-cholinergic pathway increases acetylcholine release in the colon. At the same time, EA up-regulated the co-expression of enteric glial cells (EGCs) and α7 nicotinic acetylcholine receptor (α7nAChR). EA increased the expression of choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and tyrosine hydroxylase (TH) in the colon of PD rats. Further mechanistic studies showed that EA increased the expression of glial cell-derived neurotrophic factor (GDNF), GFRa1 and p-AKT in colon tissues. The present study confirmed that EA upregulates α7nAChR through a central-cholinergic mechanism to promote GDNF release from EGCs, thereby protecting intestinal neurons and thereby improving gastrointestinal motility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。