Human Colon-on-a-Chip Enables Continuous In Vitro Analysis of Colon Mucus Layer Accumulation and Physiology

人类结肠芯片可实现结肠粘液层积累和生理学的持续体外分析

阅读:5
作者:Alexandra Sontheimer-Phelps, David B Chou, Alessio Tovaglieri, Thomas C Ferrante, Taylor Duckworth, Cicely Fadel, Viktoras Frismantas, Arlene D Sutherland, Sasan Jalili-Firoozinezhad, Magdalena Kasendra, Eric Stas, James C Weaver, Camilla A Richmond, Oren Levy, Rachelle Prantil-Baun, David T Breault

Aims

The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology.

Background & aims

The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology.

Conclusions

This study shows the production of colonic mucus with a physiologically relevant bilayer structure in vitro, which can be analyzed in real time noninvasively. The Colon Chip may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases, such as ulcerative colitis and cancer.

Methods

A human colon-on-a-chip (Colon Chip) microfluidic device lined by primary patient-derived colonic epithelial cells was used to recapitulate mucus bilayer formation, and to visualize mucus accumulation in living cultures noninvasively.

Results

The Colon Chip supports spontaneous goblet cell differentiation and accumulation of a mucus bilayer with impenetrable and penetrable layers, and a thickness similar to that observed in the human colon, while maintaining a subpopulation of proliferative epithelial cells. Live imaging of the mucus layer formation on-chip showed that stimulation of the colonic epithelium with prostaglandin E2, which is increased during inflammation, causes rapid mucus volume expansion via an Na-K-Cl cotransporter 1 ion channel-dependent increase in its hydration state, but no increase in de novo mucus secretion. Conclusions: This study shows the production of colonic mucus with a physiologically relevant bilayer structure in vitro, which can be analyzed in real time noninvasively. The Colon Chip may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases, such as ulcerative colitis and cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。