MiR-760 targets HBEGF to control cartilage extracellular matrix degradation in osteoarthritis

MiR-760 靶向 HBEGF 控制骨关节炎中的软骨细胞外基质降解

阅读:4
作者:Yingchun Zhu, Chi Zhang, Bo Jiang, Qirong Dong

Abstract

The present study was developed to explore whether microRNA (miR)-760 targets heparin-binding EGF-like growth factor (HBEGF) to control cartilage extracellular matrix degradation in osteoarthritis. Both miR-760 and HBEGF expression levels were analysed in human degenerative cartilage tissues and in interleukin (IL)-1β/tumour necrosis factor (TNF)-α-treated chondrocytes in vitro. A series of knockdown and overexpression assays were then used to gauge the functional importance of miR-760 and HBEGF in OA, with qPCR and western immunoblotting analyses. Bioinformatics assays were used to identify putative miR-760 target genes, with these predictions then being validated through RNA pulldown and luciferase reporter assays. A murine anterior cruciate ligament transection model of OA was then established to prove the in vivo relevance of these findings. These experiments revealed that human degenerative cartilage tissues exhibited significant increases in miR-760 expression with a concomitant drop in HBEGF levels. IL-1β/TNF-α-treated chondrocytes also exhibited significant increases in miR-760 expression with a concomitant drop in HBEGF expression. When chondrocytes were transfected with either miR-760 inhibitor or HBEGF overexpression constructs, this was sufficient to interfere with degradation of the extracellular matrix (ECM). Moreover, miR-760 was confirmed to control chondrocyte matrix homeostasis by targeting HBEGF, and the overexpression of HBEGF partially reversed the effects of miR-760 mimic treatment on the degradation of the cartilage ECM. When OA model mice were administered an intra-articular knee injection of an adenoviral vector encoding a miR-760 mimic construct, cartilage ECM degradation was aggravated. Conversely, the overexpression of HBEGF in OA model mice partially reversed the effects of miR-760 overexpression, restoring appropriate ECM homeostasis. In summary, these data indicated that the miR-760/HBEGF axis plays a central role in orchestrating the pathogenesis of OA, making it a candidate target for therapeutic efforts in OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。