Upregulation of microRNA-23b-3p induced by farnesoid X receptor regulates the proliferation and apoptosis of osteosarcoma cells

法呢醇X受体诱导microRNA-23b-3p上调调控骨肉瘤细胞增殖与凋亡

阅读:5
作者:Bin Wu, Chengjuan Xing, Juan Tao

Background

The downstream targets of farnesoid X receptor (FXR) such as miRNAs have a potent effect on the progression of many types of cancer. We

Conclusions

Upregulated FXR by GW4064 can obviously suppress OS cell development, and the suppressive effects may rely on miR-23b-3p/CCNG1 pathway.

Methods

The expressions of FXR and miR-23b-3p in normal osteoblasts and five osteosarcoma cell lines were measured. Their correlations were analyzed by Pearson's test and verified by the introduction of FXR agonist, GW4064. TargetScan predicted that cyclin G1 (CCNG1) was a target for miR-23b-3p. The transfection of FXR siRNA was performed to confirm the correlation between FXR and miR-23b-3p. We further transfected miR-23b-3p inhibitor into MG-63 cells, and the transfected cells were treated with 5 μM GW4064 for 48 h. Quantitative PCR (qPCR) and Western blot were performed for expression analysis. Cell proliferation, cell apoptosis rate, and cell cycle distribution were assessed by clone formation assay and flow cytometry.

Results

Scatter plot showed a positive correlation between FXR and miR-23b-3p (Pearson's coefficient test R2 = 1.00, P = 0.0028). As CCNG1 is a target for miR-23b-3p, the treatment of GW4064 induced the downregulation of CCNG1 through upregulating miR-23b-3p. The inhibition of miR-23b-3p obviously promoted cell viability, proliferation, and cell cycle progression but reduced apoptosis rate of MG-63 cells; however, the treatment of GW4064 could partially reverse the effects of the inhibition of miR-23b-3p on OS cells. Conclusions: Upregulated FXR by GW4064 can obviously suppress OS cell development, and the suppressive effects may rely on miR-23b-3p/CCNG1 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。