miR‑10a‑5p inhibits osteogenic differentiation of bone marrow‑derived mesenchymal stem cells

miR-10a-5p 抑制骨髓间充质干细胞的成骨分化

阅读:4
作者:Yingjie Zhang #, Lishu Zhou #, Zhaoqiang Zhang, Fei Ren, Liangjiao Chen, Zedong Lan

Abstract

The use of human bone marrow mesenchymal stem cells (hBMSCs) as a tissue engineering application for individuals affected by osteoporosis and other types of bone loss diseases has been well studied in recent years. The osteogenic differentiation of hBMSCs can be regulated by a number of cues. MicroRNAs (miRNAs/miRs) serve as the key regulators of various biological processes; however, to the best of our knowledge, no information exists with regards to the specific modulatory effects of miR‑10a‑5p on osteogenic differentiation of hBMSCs. The aim of the present study was to investigate the relationship between hBMSCs and miR‑10a‑5p and, ultimately, to determine how miR‑10a‑5p affects the osteogenic differentiation process of hBMSCs in vitro and in vivo. The hBMSCs used in the present study were transfected with mirVana™ miRNA inhibitors and mimics, and transfection efficiency was assessed by fluorescence microscopy and reverse transcription‑quantitative PCR (RT‑qPCR). Viability of hBMSCs following transfection was analyzed using a Cell Counting Kit‑8 assay. The mRNA expression levels of specific osteoblast markers, including alkaline phosphatase (ALP) and runt‑related transcription factor 2 (RUNX2) were measured using RT‑qPCR and western blot analysis. New bone formation was evaluated by Goldner's trichrome staining and micro‑CT analysis in vivo. No significant difference in cell viability was observed among the different groups 24 h post‑transfection. Overexpression of miR‑10a‑5p inhibited the expression of osteoblast makers in hBMSCs, whereas inhibition of miR‑10a‑5p upregulated the expression of ALP and RUNX2 in vitro. Furthermore, miR‑10a‑5p acted as a suppressor during the process of new bone formation in vivo. In conclusion, the findings of the present study suggested that miR‑10a‑5p served as a negative regulatory factor during osteoblast differentiation of hBMSCs and may be utilized in a treatment approach for bone repair in osteogenic‑related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。