Mutational and structural studies of (βα)8-barrel fold methylene-tetrahydropterin reductases utilizing a common catalytic mechanism

利用共同催化机制对 (βα)8 桶折叠亚甲基四氢蝶呤还原酶进行突变和结构研究

阅读:6
作者:Manuel Gehl, Ulrike Demmer, Ulrich Ermler, Seigo Shima

Abstract

Methylene-tetrahydropterin reductases catalyze the reduction of a methylene to a methyl group bound to a reduced pterin as C1 carrier in various one-carbon (C1) metabolisms. F420-dependent methylene-tetrahydromethanopterin (methylene-H4MPT) reductase (Mer) and the flavin-independent methylene-tetrahydrofolate (methylene-H4F) reductase (Mfr) use a ternary complex mechanism for the direct transfer of a hydride from F420H2 and NAD(P)H to the respective methylene group, whereas FAD-dependent methylene-H4F reductase (MTHFR) uses FAD as prosthetic group and a ping-pong mechanism to catalyze the reduction of methylene-H4F. A ternary complex structure and a thereof derived catalytic mechanism of MTHFR is available, while no ternary complex structures of Mfr or Mer are reported. Here, Mer from Methanocaldococcus jannaschii (jMer) was heterologously produced and the crystal structures of the enzyme with and without F420 were determined. A ternary complex of jMer was modeled on the basis of the jMer-F420 structure and the ternary complex structure of MTHFR by superimposing the polypeptide after fixing hydride-transferring atoms of the flavins on each other, and by the subsequent transfer of the methyl-tetrahydropterin from MTHFR to jMer. Mutational analysis of four functional amino acids, which are similarly positioned in the three reductase structures, indicated despite the insignificant sequence identity, a common catalytic mechanism with a 5-iminium cation of methylene-tetrahydropterin as intermediate protonated by a shared glutamate. According to structural, mutational and phylogenetic analysis, the evolution of the three reductases most likely proceeds via a convergent development although a divergent scenario requiring drastic structural changes of the common ancestor cannot be completely ruled out.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。