Integrated Hfq-interacting RNAome and transcriptomic analysis reveals complex regulatory networks of nitrogen fixation in root-associated Pseudomonas stutzeri A1501

整合的 Hfq 相互作用 RNA 组和转录组分析揭示了根系假单胞菌 A1501 中复杂的氮固定调控网络

阅读:5
作者:Fanyang Lv, Yuhua Zhan, Haichao Feng, Wenyue Sun, Changyan Yin, Yueyue Han, Yahui Shao, Wei Xue, Shanshan Jiang, Yiyuan Ma, Haonan Hu, Jinfeng Wei, Yongliang Yan, Min Lin

Abstract

The RNA chaperone Hfq acts as a global regulator of numerous biological processes, such as carbon/nitrogen metabolism and environmental adaptation in plant-associated diazotrophs; however, its target RNAs and the mechanisms underlying nitrogen fixation remain largely unknown. Here, we used enhanced UV cross-linking immunoprecipitation coupled with high-throughput sequencing to identify hundreds of Hfq-binding RNAs probably involved in nitrogen fixation, carbon substrate utilization, biofilm formation, and other functions. Collectively, these processes endow strain A1501 with the requisite capabilities to thrive in the highly competitive rhizosphere. Our findings revealed a previously uncharted landscape of Hfq target genes. Notable among these is nifM, encoding an isomerase necessary for nitrogenase reductase solubility; amtB, encoding an ammonium transporter; oprB, encoding a carbohydrate porin; and cheZ, encoding a chemotaxis protein. Furthermore, we identified more than 100 genes of unknown function, which expands the potential direct regulatory targets of Hfq in diazotrophs. Our data showed that Hfq directly interacts with the mRNA of regulatory proteins (RsmA, AlgU, and NifA), regulatory ncRNA RsmY, and other potential targets, thus revealing the mechanistic links in nitrogen fixation and other metabolic pathways. Importance: Numerous experimental approaches often face challenges in distinguishing between direct and indirect effects of Hfq-mediated regulation. New technologies based on high-throughput sequencing are increasingly providing insight into the global regulation of Hfq in gene expression. Here, enhanced UV cross-linking immunoprecipitation coupled with high-throughput sequencing was employed to identify the Hfq-binding sites and potential targets in the root-associated Pseudomonas stutzeri A1501 and identify hundreds of novel Hfq-binding RNAs that are predicted to be involved in metabolism, environmental adaptation, and nitrogen fixation. In particular, we have shown Hfq interactions with various regulatory proteins' mRNA and their potential targets at the posttranscriptional level. This study not only enhances our understanding of Hfq regulation but, importantly, also provides a framework for addressing integrated regulatory network underlying root-associated nitrogen fixation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。