An insight into the role of magnesium in the immunomodulatory properties of mesenchymal stem cells

深入了解镁在间充质干细胞免疫调节特性中的作用

阅读:6
作者:Fabiana da Silva Lima, Amanda Batista da Rocha Romero, Araceli Hastreiter, Amanda Nogueira-Pedro, Edson Makiyama, Célia Colli, Ricardo Ambrósio Fock

Abstract

Magnesium (Mg2+) is a mineral with the ability to influence cell proliferation and to modulate inflammatory/immune responses, due to its anti-inflammatory properties. In addition, mesenchymal stem cells (MSCs) modulate the function of all major immune cell populations. Knowing that, the current work aimed to investigate the effects of Mg2+ enrichment, and its influence on the immunomodulatory capacity of MSCs. Murine C3H/10T1/2 MSCs were cultivated in media with different concentrations of Mg2+ (0, 1, 3 and 5 mM), in order to evaluate the effects of Mg2+ on MSC immunomodulatory properties, cell proliferation rates, expression of NFκB and STAT-3, production of IL-1β, IL-6, TGF-β, IL-10, PGE2 and NO, and TRPM7 expression. The results showed that TRPM7 is expressed in MSCs, but Mg2+, in the way that cells were cultivated, did not affect TRPM7 expression. Additionally, there was no difference in the intracellular concentration of Mg2+. Mg2+, especially at 5 mM, raised proliferation rates of MSCs, and modulated immune responses by decreasing levels of IL-1β and IL-6, and by increasing levels of IL-10 and PGE2 in cells stimulated with LPS or TNF-α. In addition, MSCs cultured in 5 mM Mg2+ expressed lower levels of pNFκB/NFκB and higher levels of pSTAT-3/STAT-3. Furthermore, conditioned media from MSCs reduced lymphocyte and macrophage proliferation, but Mg2+ did not affect this parameter. In addition, conditioned media from MSCs cultured at 5 mM of Mg2+ modulated the production profile of cytokines, especially of IL-1β and IL-6 in macrophages. In conclusion, Mg2+ is able to modulate some immunoregulatory properties of MSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。