The functional analysis of transiently upregulated miR-101 suggests a "braking" regulatory mechanism during myogenesis

暂时上调 miR-101 的功能分析表明肌肉生成过程中存在“制动”调节机制

阅读:7
作者:Shurong Liu #, Shujuan Xie #, Huafeng Chen, Bin Li, Zhirong Chen, Yeya Tan, Jianhua Yang, Lingling Zheng, Zhendong Xiao, Qi Zhang, Lianghu Qu

Abstract

Skeletal muscle differentiation is a highly coordinated process that involves many cellular signaling pathways and microRNAs (miRNAs). A group of muscle-specific miRNAs has been reported to promote myogenesis by suppressing key signaling pathways for cell growth. However, the functional role and regulatory mechanism of most non-muscle-specific miRNAs with stage-specific changes during differentiation are largely unclear. Here, we describe the functional characterization of miR-101a/b, a pair of non-muscle-specific miRNAs that show the largest change among a group of transiently upregulated miRNAs during myogenesis in C2C12 cells. The overexpression of miR-101a/b inhibits myoblast differentiation by suppressing the p38/MAPK, Interferon Gamma, and Wnt pathways and enhancing the C/EBP pathway. Mef2a, a key protein in the p38/MAPK pathway, was identified as a direct target of miR-101a/b. Interestingly, we found that the long non-coding RNA (lncRNA) Malat1, which promotes muscle differentiation, interacts with miR-101a/b, and this interaction competes with Mef2a mRNA to relieve the inhibition of the p38/MAPK pathway during myogenesis. These results uncovered a "braking" role in differentiation of transiently upregulated miRNAs and provided new insights into the competing endogenous RNA (ceRNA) regulatory mechanism in myoblast differentiation and myogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。