Macrophage migration inhibitory factor deficiency aggravates effects of fructose-enriched diet on lipid metabolism in the mouse liver

巨噬细胞移动抑制因子缺乏加剧富含果糖的饮食对小鼠肝脏脂质代谢的影响

阅读:5
作者:Ljupka Gligorovska, Ana Teofilović, Danijela Vojnović Milutinović, Nenad Miladinović, Sanja Kovačević, Nataša Veličković, Ana Djordjevic

Abstract

Dietary fructose can disturb hepatic lipid metabolism in a way that leads to lipid accumulation and steatosis, which is often accompanied with low-grade inflammation. The macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with important role not only in the regulation of inflammation, but also in the modulation of energy metabolism in the liver. Thus, the aim of this study was to investigate the role of Mif deficiency in fructose-induced disturbances of hepatic lipid metabolism and ectopic lipid accumulation. Wild type (WT) and Mif deficient (MIF-/- ) C57Bl/6J mice were used to analyze the effects of 9-week 20% fructose-enriched diet on hepatic lipid metabolism (both lipogenesis and β-oxidation) and histology, inflammatory status and glucocorticoid receptor (GR) signaling. The results showed fructose-induced elevation of lipogenic genes (fatty acid synthase (Fas) and stearoyl-CoA desaturase-1 (Scd1) and transcriptional lipogenic regulators (liver X receptor (LXR), sterol regulatory element binding protein 1c (SREBP1c), and carbohydrate response element-binding protein (ChREBP)). However, microvesicular fatty changes, accompanied with enhanced inflammation, were observable only in fructose-fed Mif deficient animals, and were most likely result of GR activation and facilitated uptake and decreased β-oxidation of FFA, as evidenced by elevated protein level of fatty acid translocase (FAT/CD36) and decreased carnitine palmitoyl transferase 1 (CPT1) level. In conclusion, the results show that Mif deficiency aggravates the effects of energy-rich fructose diet on hepatic lipid accumulation, most likely through enhanced inflammation and activation of GR signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。