Bioinformatic analyses reveal a distinct Notch activation induced by STAT3 phosphorylation in the mesenchymal subtype of glioblastoma

生物信息学分析表明,在间充质亚型胶质母细胞瘤中,STAT3 磷酸化诱导了明显的 Notch 激活

阅读:6
作者:Wen Cheng, Chuanbao Zhang, Xiufang Ren, Yang Jiang, Sheng Han, Yang Liu, Jinquan Cai, Mingyang Li, Kuanyu Wang, Yanwei Liu, Huimin Hu, Qingbin Li, Pei Yang, Zhaoshi Bao, Anhua Wu

Abstract

OBJECTIVE Glioblastoma (GBM) is the most common and lethal type of malignant glioma. The Cancer Genome Atlas divides the gene expression-based classification of GBM into classical, mesenchymal, neural, and proneural subtypes, which is important for understanding GBM etiology and for designing effective personalized therapy. Signal transducer and activator of transcription 3 (STAT3), a critical transcriptional activator in tumorigenesis, is persistently phosphorylated and associated with an unfavorable prognosis in GBM. Although a set of specific targets has been identified, there have been no systematic analyses of STAT3 signaling based on GBM subtype. METHODS This study compared STAT3-associated messenger RNA, protein, and microRNA expression profiles across different subtypes of GBM. RESULTS The analyses revealed a prominent role for STAT3 in the mesenchymal but not in other GBM subtypes, which can be reliably used to classify patients with mesenchymal GBM into 2 groups according to phosphorylated STAT3 expression level. Differentially expressed genes suggest an association between Notch and STAT3 signaling in the mesenchymal subtype. Their association was validated in the U87 cell, a malignant glioma cell line annotated as mesenchymal subtype. Specific associated proteins and microRNAs further profile the STAT3 signaling among GBM subtypes. CONCLUSIONS These findings suggest a prominent role for STAT3 signaling in mesenchymal GBM and highlight the importance of identifying signaling pathways that contribute to specific cancer subtypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。