Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury

人参皂苷 Rg3 负载、活性氧响应性聚合物纳米粒子用于减轻心肌缺血再灌注损伤

阅读:5
作者:Lan Li, Yili Wang, Rui Guo, Sheng Li, Jingyu Ni, Shan Gao, Xiumei Gao, Jingyuan Mao, Yan Zhu, Pingli Wu, Hongjun Wang, Deling Kong, Han Zhang, Meifeng Zhu, Guanwei Fan

Abstract

Myocardial ischemia-reperfusion injury (MIRI) is a serious threat to the health and lives of patients without any effective therapy. Excessive production of reactive oxygen species (ROS) is considered a principal cause of MIRI. Some natural products, including ginsenoside Rg3 (Rg3), exhibit robust antioxidant activity. However, the lack of an effective delivery strategy for this hydrophobic compound hinders its clinical application. In addition, therapeutic targets and molecular mechanisms of Rg3 require further elucidation to establish its mode of action. This study aimed to generate ROS-responsive nanoparticles (PEG-b-PPS) via the self-assembly of diblock copolymers of poly (ethylene glycol) (PEG) and poly (propylene sulfide) (PPS) and use them for Rg3 encapsulation and delivery. We identified FoxO3a as the therapeutic target of Rg3 using molecular docking and gene silencing. In rat ischemia-reperfusion model, an intramyocardial injection of Rg3-loaded PEG-b-PPS nanoparticles improved the cardiac function and reduced the infarct size. The mechanism of action was established as Rg3 targeting of FoxO3a, which inhibited the promotion of oxidative stress, inflammation, and fibrosis via downstream signaling pathways. In conclusion, this approach, involving ROS-responsive drug release, together with the identification of the target and mechanism of action of Rg3, provided an effective strategy for treating ischemic diseases and oxidative stress and could accelerate the implementation of hydrophobic natural products in clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。