Significance
In this work we analyze for the first time the interconnection between Plasmodium and human red blood cells ubiquitin-regulated proteins in the context of infection. We identified a number of human and Plasmodium proteins whose ubiquitylation pattern changes during the asexual infective stage. We demonstrate that ubiquitylation of REX1, a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, peaks in trophozoites stage. The ubiquitin-proteome from P. falciparum infected red blood cells (iRBCs) revealed a significant host-parasite crosstalk, underlining the importance of ubiquitin-regulated proteolytic activities during the intraerythrocytic developmental cycle (IDC) of P. falciparum. Major cellular processes defined from gene ontology such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection. Given the importance of ubiquitylation in the development of infectious diseases, this work provides a number of potential drug-target candidates that should be further explored.
