A Novel Phenazine Analog, CPUL1, Suppresses Autophagic Flux and Proliferation in Hepatocellular Carcinoma: Insight from Integrated Transcriptomic and Metabolomic Analysis

新型吩嗪类似物 CPUL1 抑制肝细胞癌中的自噬通量和增殖:综合转录组学和代谢组学分析的见解

阅读:5
作者:Jiaqin Chen, Dong Feng, Yuanyuan Lu, Yanjun Zhang, Hanxiang Jiang, Man Yuan, Yifan Xu, Jianjun Zou, Yubing Zhu, Jingjing Zhang, Chun Ge, Ying Wang

Background

CPUL1, a phenazine analog, has demonstrated potent antitumor properties against hepatocellular carcinoma (HCC) and indicates a promising prospect in pharmaceutical development. However, the underlying mechanisms remain largely obscure.

Conclusions

Our study comprehensively profiled the anti-hepatoma characteristics and molecular mechanisms of CPUL1, highlighting the implications of progressive metabolic failure. This could partially be ascribed to autophagy blockage, which supposedly conveyed nutritional deprivation and intensified cellular vulnerability to stress.

Methods

Multiple HCC cell lines were used to investigate the in vitro effects of CPUL1. The antineoplastic properties of CPUL1 were assessed in vivo by establishing a xenograft nude mice model. After that, metabolomics, transcriptomics, and bioinformatics were integrated to elucidate the mechanisms underlying the therapeutic efficacy of CPUL1, highlighting an unanticipated involvement of autophagy dysregulation.

Results

CPUL1 suppressed HCC cell proliferation in vitro and in vivo, thereby endorsing the potential as a leading agent for HCC therapy. Integrative omics characterized a deteriorating scenario of metabolic debilitation with CPUL1, presenting an issue in the autophagy contribution of autophagy. Subsequent observations indicated that CPUL1 treatment could impede autophagic flow by suppressing autophagosome degradation rather than its formation, which supposedly exacerbated cellular damage triggered by metabolic impairment. Moreover, the observed late autophagosome degradation may be attributed to lysosome dysfunction, which is essential for the final stage of autophagy and cargo disposal. Conclusions: Our study comprehensively profiled the anti-hepatoma characteristics and molecular mechanisms of CPUL1, highlighting the implications of progressive metabolic failure. This could partially be ascribed to autophagy blockage, which supposedly conveyed nutritional deprivation and intensified cellular vulnerability to stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。