Restricted tRNA methylation by intermolecular disulfide bonds in DNMT2/TRDMT1

DNMT2/TRDMT1 中的分子间二硫键限制了 tRNA 甲基化

阅读:3
作者:Huari Li, Daiyun Zhu, Yapeng Yang, Yunfei Ma, Yong Chen, Pingfang Xue, Juan Chen, Mian Qin, Dandan Xu, Chao Cai, Hongjing Cheng

Abstract

Reportedly, DNMT2/TRDMT1 mainly methylates tRNAs at C38 and prevents them from the cleavage under stress. It also plays an essential role in the survival and physiological homeostasis of organisms. Nevertheless, DNMT2/TRDMT1 exhibits much weaker tRNA methylation activity in vitro than other tRNA methyltransferases, TrmD and Trm5. Here, we explored the restricted tRNA methylation mechanism by DNMT2/TRDMT1. In the current study, the optimized buffer C at 37 °C was the best condition for DNMT2/TRDMT1 activation. Of note, Dithiothreitol (DTT) was an indispensable component for this enzyme catalysis. Moreover, reductants took similar effects on the conformation change and oligomeric formation of DNMT2/TRDMT1. Ultimately, LC-MS/MS result revealed that C292-C292 and C292-C287 were predominant intermolecular disulfide bonds in recombinant DNMT2/TRDMT1. Notably, DNMT2/TRDMT1 existed primarily as dimers via intermolecular disulfide bonds C79-C24, C292-C292, and C222-C24 in HEK293T cells. GSSG stress enhanced tRNA methylation level in the early stage of stress, whereas the DNMT2/TRDMT1 activity might be unfavorable along with this enzyme accumulation in the nucleus. Excitingly, GSH stress downregulated the DNMT2/TRDMT1 expression and promoted tRNA methylation in cells, probably through breaking intermolecular disulfide bonds in this enzyme. Thus, our findings demonstrated restricted tRNA methylation by disulfide bonds in DNMT2/TRDMT1, and will provide important implications for redox stress related-diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。