The basic residues in the Orai1 channel inner pore promote opening of the outer hydrophobic gate

Orai1 通道内孔中的碱性残基促进外部疏水门的开放

阅读:5
作者:Megumi Yamashita #, Christopher E Ing #, Priscilla See-Wai Yeung, Mohammad M Maneshi, Régis Pomès, Murali Prakriya

Abstract

Store-operated Orai1 channels regulate a wide range of cellular functions from gene expression to cell proliferation. Previous studies have shown that gating of Orai1 channels is regulated by the outer pore residues V102 and F99, which together function as a hydrophobic gate to block ion conduction in resting channels. Opening of this gate occurs through a conformational change that moves F99 away from the permeation pathway, leading to pore hydration and ion conduction. In addition to this outer hydrophobic gate, several studies have postulated the presence of an inner gate formed by the basic residues R91, K87, and R83 in the inner pore. These positively charged residues were suggested to block ion conduction in closed channels via mechanisms involving either electrostatic repulsion or steric occlusion by a bound anion plug. However, in contrast to this model, here we find that neutralization of the basic residues dose-dependently abolishes both STIM1-mediated and STIM1-independent activation of Orai1 channels. Molecular dynamics simulations show that loss of the basic residues dehydrates the pore around the hydrophobic gate and stabilizes the pore in a closed configuration. Likewise, the severe combined immunodeficiency mutation, Orai1 R91W, closes the channel by dewetting the hydrophobic stretch of the pore and stabilizing F99 in a pore-facing configuration. Loss of STIM1-gating in R91W and in the other basic residue mutants is rescued by a V102A mutation, which restores pore hydration at the hydrophobic gate to repermit ion conduction. These results indicate that the inner pore basic residues facilitate opening of the principal outer hydrophobic gate through a long-range effect involving hydration of the outer pore.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。