Large and Giant Unilamellar Vesicle(s) Obtained by Self-Assembly of Poly(dimethylsiloxane)- b-poly(ethylene oxide) Diblock Copolymers, Membrane Properties and Preliminary Investigation of their Ability to Form Hybrid Polymer/Lipid Vesicles

通过聚(二甲基硅氧烷)-b-聚(环氧乙烷)二嵌段共聚物的自组装获得大型和巨型单层囊泡、膜特性及其形成混合聚合物/脂质囊泡的能力的初步研究

阅读:7
作者:Martin Fauquignon, Emmanuel Ibarboure, Stéphane Carlotti, Annie Brûlet, Marc Schmutz, Jean-François Le Meins

Abstract

In the emerging field of hybrid polymer/lipid vesicles, relatively few copolymers have been evaluated regarding their ability to form these structures and the resulting membrane properties have been scarcely studied. Here, we present the synthesis and self-assembly in solution of poly(dimethylsiloxane)-block-poly(ethylene oxide) diblock copolymers (PDMS-b-PEO). A library of different PDMS-b-PEO diblock copolymers was synthesized using ring-opening polymerization of hexamethylcyclotrisiloxane (D3) and further coupling with PEO chains via click chemistry. Self-assembly of the copolymers in water was studied using Dynamic Light Scattering (DLS), Static Light Scattering (SLS), Small Angle Neutron Scattering (SANS), and Cryo-Transmission Electron Microscopy (Cryo-TEM). Giant polymersomes obtained by electroformation present high toughness compared to those obtained from triblock copolymer in previous studies, for similar membrane thickness. Interestingly, these copolymers can be associated to phospholipids to form Giant Hybrid Unilamellar Vesicles (GHUV); preliminary investigations of their mechanical properties show that tough hybrid vesicles can be obtained.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。