Reduced Acquisition Time [18F]GE-180 PET Scanning Protocol Replaces Gold-Standard Dynamic Acquisition in a Mouse Ischemic Stroke Model

缩短采集时间 [18F]GE-180 PET 扫描协议取代小鼠缺血性中风模型中的金标准动态采集

阅读:11
作者:Artem Zatcepin, Steffanie Heindl, Ulrike Schillinger, Lena Kaiser, Simon Lindner, Peter Bartenstein, Anna Kopczak, Arthur Liesz, Matthias Brendel, Sibylle I Ziegler

Aim

Understanding neuroinflammation after acute ischemic stroke is a crucial step on the way to an individualized post-stroke treatment. Microglia activation, an essential part of neuroinflammation, can be assessed using [18F]GE-180 18 kDa translocator protein positron emission tomography (TSPO-PET). However, the commonly used 60-90 min post-injection (p.i.) time window was not yet proven to be suitable for post-stroke neuroinflammation assessment. In this study, we compare semi-quantitative estimates derived from late time frames to quantitative estimates calculated using a full 0-90 min dynamic scan in a mouse photothrombotic stroke (PT) model. Materials and

Conclusion

Simplified quantification by a reference tissue ratio of the late 60-90 min p.i. [18F]GE-180 PET image can replace full quantification of a dynamic scan for assessment of microglial activation in the mouse PT model.

Methods

Six mice after PT and six sham mice were included in the study. For a half of the mice, we acquired four serial 0-90 min scans per mouse (analysis cohort) and calculated standardized uptake value ratios (SUVRs; cerebellar reference) for the PT volume of interest (VOI) in five late 10 min time frames as well as distribution volume ratios (DVRs) for the same VOI. We compared late static 10 min SUVRs and the 60-90 min time frame of the analysis cohort to the corresponding DVRs by linear fitting. The other half of the animals received a static 60-90 min scan and was used as a validation cohort. We extrapolated DVRs by using the static 60-90 min p.i. time window, which were compared to the DVRs of the analysis cohort.

Results

We found high linear correlations between SUVRs and DVRs in the analysis cohort for all studied 10 min time frames, while the fits of the 60-70, 70-80, and 80-90 min p.i. time frames were the ones closest to the line of identity. For the 60-90 min time window, we observed an excellent linear correlation between SUVR and DVR regardless of the phenotype (PT vs. sham). The extrapolated DVRs of the validation cohort were not significantly different from the DVRs of the analysis group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。