Functional Hydrogels Promote Vegetable Growth in Cadmium-Contaminated Soil

功能性水凝胶促进镉污染土壤中的植物生长

阅读:5
作者:Jin Huang, Takehiko Gotoh, Satoshi Nakai, Akihiro Ueda

Abstract

Over the years, the concentration of cadmium in soil has increased due to industrialization. Cadmium in the soil enters the human body through plant accumulation, seriously endangering human health. In the current study, two types of hydrogels were successfully synthesized using a free radical polymerization method: an ion-type hydrogel referred to as DMAPAA (N-(3-(Dimethyl amino) propyl) acrylamide)/DMAPAAQ (N,N-Dimethyl amino propyl acrylamide, methyl chloride quaternary) and a non-ion-type hydrogel known as DMAA (N,N-Dimethylacrylamide). In the experiment carried out in this study, the ion-type hydrogel DMAPAA/DMAPAAQ was introduced to cadmium-contaminated soil for vegetable cultivation. The study found that at cadmium levels of 0 and 2 mg/kg in soil, when exposed to a pH 2 solution, cadmium wasn't detected in the filtrate using ICP. As the amount of cadmium increased to 500 mg/kg, hydrogel addition gradually reduced the filtrate cadmium concentration. Notably, the use of the 4% hydrogel resulted in 0 mg/L of cadmium. For the 0% hydrogel, vegetable cadmium absorption was determined to be 0.07 mg/g, contrasting with 0.03 mg/g for the 4% hydrogel. The DMAPAA/DMAPAAQ hydrogel significantly boosts vegetable growth by efficiently absorbing nitrate ions through ion exchange, releasing them for plant uptake. In contrast, the DMAA hydrogel, used as a control, does not enhance plant growth despite its water absorption properties. In summary, the composite hydrogel shows great potential for enhancing vegetable yield and immobilizing heavy metals in soil.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。