NFATc3 deficiency protects against high fat diet (HFD)-induced hypothalamus inflammation and apoptosis via p38 and JNK suppression

NFATc3 缺乏可通过抑制 p38 和 JNK 来预防高脂饮食 (HFD) 引起的下丘脑炎症和细胞凋亡

阅读:4
作者:Meng-Jun Liao, Hua Lin, Yun-Wu He, Cong Zou

Abstract

Hypothalamic inflammation and apoptosis cause neural injury, playing an important role in metabolic syndrome development. Nuclear Factors of Activated T cells (NFATc3) show many physiological and pathological effects. However, the function of NFATc3 in high fat diet (HFD)-induced hypothalamus injury remains unknown. The wild type (WT) and NFATc3-knockout (KO) mice were subjected to HFD feeding for 16 weeks to examine NFATc3 function in vivo. Astrocytes isolated from WT or KO mice were cultured and exposed to fructose (Fru) in vitro. The liver damage, hypothalamus injury, pro-inflammatory markers, NF-κB (p65), Caspase-3 and mitogen-activated protein kinases (MAPKs) pathways were evaluated. NFATc3 was significantly up-regulated in hypothalamus from mice challenged with HFD, and in astrocytes incubated with Fru. Both in vivo and in vitro studies indicated that NFATc3-deletion attenuated metabolism syndrome, reduced inflammatory regulators expression, inactivated NF-κB (p65), Caspase-3 and p38/JNK signaling pathway. Of note, we identified that promoting p38 or JNK activation could rescue inflammatory response and apoptosis in NFATc3-KO astrocytes stimulated by Fru. Together, these findings revealed an important role of NFATc3 NFATc3 for HFD-induced metabolic syndrome and particularly hypothalamus injury, and understanding of the regulatory molecular mechanism might provide new and effective therapeutic strategies for prevention and treatment of hypothalamic damage associated with dietary obesity-associated neuroinflammation and apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。