Maintenance of the self-renewal properties of neural progenitor cells cultured in three-dimensional collagen scaffolds by the REDD1-mTOR signal pathway

REDD1-mTOR信号通路维持三维胶原支架中培养的神经祖细胞的自我更新特性

阅读:3
作者:Jin Han, Zhifeng Xiao, Lei Chen, Bing Chen, Xiaoran Li, Sufang Han, Yannan Zhao, Jianwu Dai

Abstract

Three-dimensional (3-D) culture, compared with traditional two-dimensional (2-D) cell culture, can provide physical signals and 3-D matrix close to the in vivo microenvironments. Here, sponge-like collagen scaffolds were used to assess how 3-D culture would affect the differentiation and self-renewal of neural progenitor cells (NPCs). Cultured in differentiation medium without growth factors, cells in 3-D collagen scaffolds yielded much higher clone formation efficiency and expressed less neuron marker, TUJ1, compared with cells cultured on 2-D plates. mTOR inactivation was identified and showed to supported the self-renewal of NPCs in 3-D culture. At the same time, REDD1 was highly expressed in cells cultured in 3-D conditions, which blocks the activity of mTOR. Moreover, knocking-down REDD1 induced the differentiation of NPCs in 3-D collagen scaffolds. These results indicated that mTOR inactivation by REDD1 mediated the self-renewal regulation of NPCs in 3-D cultures. Thus, 3-D collagen scaffolds maintained self-renewal properties of NPCs, and the inhibitory regulator of mTOR (such as REDD1) played an important role in the regulation of self-renewal and differentiation of NPCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。