Disruption of the annexin A1/S100A11 complex increases the migration and clonogenic growth by dysregulating epithelial growth factor (EGF) signaling

膜联蛋白 A1/S100A11 复合物的破坏通过失调上皮生长因子 (EGF) 信号传导来增加迁移和克隆生长

阅读:7
作者:Michaela Poeter, Susanne Radke, Meryem Koese, Florian Hessner, Anika Hegemann, Agnes Musiol, Volker Gerke, Thomas Grewal, Ursula Rescher

Abstract

Endocytosis of activated growth factor receptors regulates spatio-temporal cellular signaling. In the case of the EGF receptor, sorting into multivesicular bodies (MVBs) controls signal termination and subsequently leads to receptor degradation in lysosomes. Annexin A1, a Ca(2+)-regulated membrane binding protein often deregulated in human cancers, interacts with the EGF receptor and is phosphorylated by internalized EGF receptor on endosomes. Most relevant for EGF receptor signal termination, annexin A1 is required for the formation of internal vesicles in MVBs that sequester ligand-bound EGF receptor away from the limiting membrane. To elucidate the mechanism underlying annexin A1-dependent EGF receptor trafficking we employed an N-terminally truncated annexin A1 mutant that lacks the EGF receptor phosphorylation site and the site for interaction with its protein ligand S100A11. Overexpression of this dominant-negative mutant induces a delay in EGF-induced EGF receptor transport to the LAMP1-positive late endosomal/lysosomal compartment and impairs ligand-induced EGF receptor degradation. Consistent with these findings, EGF-stimulated EGF receptor and MAP kinase pathway signaling is prolonged. Importantly, depletion of S100A11 also results in a delayed EGF receptor transport and prolonged MAP kinase signaling comparable to the trafficking defect observed in cells expressing the N-terminally truncated annexin A1 mutant. These results strongly suggest that the function of annexin A1 as a regulator of EGF receptor trafficking, degradation and signaling is critically mediated through an N-terminal interaction with S100A11 in the endosomal compartment. This interaction appears to be essential for lysosomal targeting of the EGF receptor, possibly by providing a physical scaffold supporting inward vesiculation in MVBs. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。