An integrated organoid omics map extends modeling potential of kidney disease

综合类器官组学图谱拓展了肾脏疾病的建模潜力

阅读:4
作者:Moritz Lassé, Jamal El Saghir, Celine C Berthier, Sean Eddy, Matthew Fischer, Sandra D Laufer, Dominik Kylies, Arvid Hutzfeldt, Léna Lydie Bonin, Bernhard Dumoulin, Rajasree Menon, Virginia Vega-Warner, Felix Eichinger, Fadhl Alakwaa, Damian Fermin, Anja M Billing, Akihiro Minakawa, Phillip J McCown

Abstract

Kidney organoids are a promising model to study kidney disease, but their use is constrained by limited knowledge of their functional protein expression profile. Here, we define the organoid proteome and transcriptome trajectories over culture duration and upon exposure to TNFα, a cytokine stressor. Older organoids increase deposition of extracellular matrix but decrease expression of glomerular proteins. Single cell transcriptome integration reveals that most proteome changes localize to podocytes, tubular and stromal cells. TNFα treatment of organoids results in 322 differentially expressed proteins, including cytokines and complement components. Transcript expression of these 322 proteins is significantly higher in individuals with poorer clinical outcomes in proteinuric kidney disease. Key TNFα-associated protein (C3 and VCAM1) expression is increased in both human tubular and organoid kidney cell populations, highlighting the potential for organoids to advance biomarker development. By integrating kidney organoid omic layers, incorporating a disease-relevant cytokine stressor and comparing with human data, we provide crucial evidence for the functional relevance of the kidney organoid model to human kidney disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。