lncRNA-ZFAS1 induces mitochondria-mediated apoptosis by causing cytosolic Ca2+ overload in myocardial infarction mice model

lncRNA-ZFAS1 通过引起心肌梗死小鼠模型中的细胞浆 Ca2+ 超载诱导线粒体介导的细胞凋亡

阅读:6
作者:Lei Jiao, Mengmeng Li, Yingchun Shao, Yuanyuan Zhang, Manyu Gong, Xuewen Yang, Yanying Wang, Zhongyue Tan, Lihua Sun, Lina Xuan, Qi Yu, Yanru Li, Yuqiu Gao, Heng Liu, Honglin Xu, Xiaohan Li, Yong Zhang, Ying Zhang

Abstract

Previously, we have identified ZFAS1 as a potential new long non-coding RNA (lncRNA) biomarker of acute myocardial infarction (MI) and as a sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) inhibitor, causing intracellular Ca2+ overload and contractile dysfunction in a mouse model of MI. In the current study, we aimed to evaluate the effects of ZFAS1 on the apoptosis of cardiomyocytes in the MI mouse model. Knockdown of endogenous ZFAS1 by virus-mediated silencing shRNA or siZFAS1 partially abrogated the ischemia-induced apoptosis of cardiomyocytes. Overexpression of ZFAS1 in normal cardiomyocytes reduced the cell viability, similar to that observed in hypoxia-treated cardiomyocytes. Moreover, ZFAS1 cardiac-specific knock-in mice showed impaired cardiac function, adversely altered Ca2+ homeostasis, repressed expression and activities of SERCA2a, and increased apoptosis. At the subcellular level, ZFAS1 induced mitochondrial swelling and showed a pronounced decrease in mitochondrial membrane potential. At the molecular level, ZFAS1 activated the mitochondria apoptosis pathway, which could be nearly abolished by a calcium chelator. The effects of ZFAS1 were readily reversible upon knockdown of this lncRNA. Notably, ZFAS1-FD (only functional domain) mimicked the effects of full-length ZFAS1 in regulation of cardiomyocyte apoptosis. In conclusion, our study shows that ZFAS1, an endogenous SERCA2a inhibitor, induces mitochondria-mediated apoptosis via cytosolic Ca2+ overload. Therefore, anti-ZFAS1 might be considered a new therapeutic strategy for protecting cardiomyocytes from MI-induced apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。