Electric Field-Modulated Electrospray Ionization Mass Spectrometry for Quantity Calibration and Mass Tracking

电场调制电喷雾电离质谱法用于定量校准和质量跟踪

阅读:9
作者:Pin-Chieh Hsu, Pawel L Urban

Abstract

Analyses conducted by electrospray ionization (ESI) mass spectrometry (MS) typically entail performing a number of preparatory steps, which include quantity calibration and mass calibration. Quantity calibration can be affected by signal noise, while mass calibration can be affected by instrumental drift if analyses are performed over an extended period of time. Here, we present two methods for achieving these calibrations using modulation of electrospray plume by alternating electric fields and demodulating the resulting MS ion currents. For this purpose, we use an ESI source fitted with three ring electrodes between the electrospray emitter and the mass spectrometer's inlet. One of these electrodes is supplied with a sine electric signal. Optionally, a nanoESI emitter is also placed between the ring electrodes and the mass spectrometer's orifice to supply calibrant ions. The ion currents, recorded with this setup, present wave-like features. In the first variant, using a triple quadrupole mass analyzer, the ion currents are subjected to data treatment by fast Fourier transform (FFT), and the resulting FFT magnitudes are correlated with analyte concentrations to produce a calibration plot. In the second variant, using a quadrupole time-of-flight mass analyzer, the mass spectra recorded at the analyte ion current maxima are mass-checked using the m/z value of the internal standard (injected via nanoESI emitter), which appears predominantly in the time intervals corresponding to the analyte ion current minima. The setup has been characterized using simulation software and optimized. Overall, the method enables the preparation of quantity calibration plots and monitoring (minor) m/z drifts during prolonged analyses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。