Effect of curcumin on vascular endothelial growth factor in hypoxic HepG2 cells via the insulin-like growth factor 1 receptor signaling pathway

姜黄素通过胰岛素样生长因子1受体信号通路对缺氧HepG2细胞血管内皮生长因子的影响

阅读:5
作者:Yihui Chen, Wei Zhong, Baohua Chen, Chuanyu Yang, Song Zhou, Jing Liu

Abstract

To investigate the anti-angiogenic effect and underlying molecular mechanisms of curcumin on HepG2 cells under hypoxic conditions, insulin-like growth factor 1 receptor (IGF-1R) knockout HepG2 cells were constructed using a clustered regularly interspaced short palindromic repeats/Cas9 genome-editing system. Hypoxic conditions were generated using cobalt chloride (CoCl2). An MTT assay was performed to measure the effects of curcumin on cell viability in hypoxia-induced IGF-1R knockout HepG2 cells, while western blot analysis was used to detect the expression of IGF-1R, phosphorylated (p)-protein kinase B (Akt), p-extracellular signal-regulated kinases (Erk)1/2, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). The results revealed that CoCl2 at low concentrations (50 and 100 µM) had no significant inhibitory effects on IGF-1R knockout HepG2 cells. However, with increasing concentrations of CoCl2 and treatment time, cell viability decreased and was significantly reduced at 150, 200 and 400 µM compared with the control group (P<0.05). The expression of HIF-1α and VEGF were significantly increased when the cells were treated with 150 or 200 µM CoCl2 compared with the control (P<0.05). With the increase of CoCl2 concentration or the treatment time, the expression of HIF-1α and VEGF were upregulated gradually. Additionally, curcumin significantly inhibited the expression of p-Akt, p-Erk1/2, HIF-1α and VEGF in hypoxia-induced IGF-1R knockout HepG2 cells. In conclusion, the findings of the present study suggest that curcumin may serve a pivotal role in tumor suppression via the inhibition of IGF-1R-mediated angiogenesis under hypoxic conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。