MicroRNA-200b-3p restrains gastric cancer cell proliferation, migration, and invasion via C-X-C motif chemokine ligand 12/CXC chemokine receptor 7 axis

MicroRNA-200b-3p通过CXC基序趋化因子配体12/CXC趋化因子受体7轴抑制胃癌细胞增殖、迁移和侵袭

阅读:6
作者:Dinuo Li, Qiang Li

Abstract

This study was conducted to investigate the impact of microRNA (miR)-200b-3p on viability, migration, and invasion of gastric cancer (GC) cells and its mechanism. Quantitative real-time PCR (qRT-PCR) was conducted to measure miR-200b-3p expression in GC tissues and cells; besides, the relationship between miR-200b-3p expression and overall survival time (OS) was analyzed with OncomiR database; cell counting kit-8 (CCK-8), colony formation assay, flow cytometry, scratch healing assay, and Transwell assay were performed to detect the proliferation, cell cycle progression, migration, and invasion of GC cells; a lung metastasis model in nude mice was used to examine the effect of miR-200b-3p on the metastasis of GC cells in vivo; the interplay between miR-200b-3p and C-X-C motif chemokine ligand 12 (CXCL12) mRNA 3' UTR was predicted by bioinformatics and verified with a dual-luciferase reporter gene assay; besides, the expression of CXCL12 and CXC chemokine receptor 7 (CXCR7) was probed by Western blot. It was found that miR-200b-3p expression was down-regulated in GC tissues, which was remarkably associated with the lymph node metastasis and decrease of differentiation of GC; transfection with miR-200b-3p mimics restrained the growth, migration, and invasion of GC cells in vitro, induced cell cycle arrest, and inhibited CXCL12 and CXCR7 expression levels; transfection of miR-200b-3p inhibitors worked oppositely in vitro and promoted lung metastasis in vivo. CXCL12 was confirmed as the downstream target of miR-200b-3p and was negatively modulated by miR-200b-3p. In conclusion, miR-200b-3p inhibited GC progression via regulating CXCL12/CXCR7 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。