Particulate Matter Exposure Exacerbates Amyloid-β Plaque Deposition and Gliosis in APP/PS1 Mice

颗粒物暴露加剧 APP/PS1 小鼠的淀粉样蛋白-β 斑块沉积和神经胶质增生

阅读:8
作者:Bijayani Sahu, Amy R Mackos, Angela M Floden, Loren E Wold, Colin K Combs

Background

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) plaques, neuroinflammation, and neuronal death. There are several well-established genetic and environmental factors hypothesized to contribute to AD progression including air pollution. However, the molecular mechanisms by which air pollution exacerbates AD are unclear.

Conclusion

Our data suggest that chronic particulate matter exposure exacerbates AD by increasing Aβ plaque load, gliosis, and the brain inflammatory status.

Methods

Male C57BL/6;C3H wild type and APP/PS1 mice were exposed to either filtered air (FA) or particulate matter sized under 2.5μm (PM2.5) for 6 h/day, 5 days/week for 3 months and brains were collected. Immunohistochemistry for Aβ, GFAP, Iba1, and CD68 and western blot analysis for PS1, BACE, APP, GFAP, and Iba1 were performed. Aβ ELISAs and cytokine arrays were performed on frozen hippocampal and cortical lysates, respectively.

Objective

This study explored the effects of particulate matter exposure on AD-related brain changes using the APP/PS1 transgenic model of disease.

Results

The Aβ plaque load was significantly increased in the hippocampus of PM2.5-exposed APP/PS1 mice compared to their respective FA controls. Additionally, in the PM2.5-exposed APP/PS1 group, increased astrocytosis and microgliosis were observed as indicated by elevated GFAP, Iba1, and CD68 immunoreactivities. PM2.5 exposure also led to an elevation in the levels of PS1 and BACE in APP/PS1 mice. The cytokines TNF-α, IL-6, IL-1β, IFN-γ, and MIP-3α were also elevated in the cortices of PM2.5-exposed APP/PS1 mice compared to FA controls.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。