Significance
Histone deacetylase (HDAC) inhibitors are a promising class of drugs to treat certain cancers, autoimmune, and neurodegenerative diseases. However, treated patients can experience various cardiac adverse events such as hearth rhythm disorders. This study found that human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) can predict cardiac adverse events in patients caused by HDAC inhibitors. Furthermore, transcriptional changes at the level of gene expression supported the effects on the beating properties of hiPS-CMs and highlight targets that might cause these cardiac adverse effects. hiPS-CMs represent a valuable translational model to assess HDAC inhibitor-mediated cardiotoxicity and to support development of safer HDAC inhibitors.
