Global histone modification profiling reveals the epigenomic dynamics during malignant transformation in a four-stage breast cancer model

整体组蛋白修饰分析揭示了四阶段乳腺癌模型中恶性转化过程中的表观基因组动态

阅读:7
作者:Quan-Yi Zhao #, Pin-Ji Lei #, Xiaoran Zhang, Jun-Yi Zheng, Hui-Yi Wang, Jiao Zhao, Yi-Ming Li, Mei Ye, Lianyun Li, Gang Wei, Min Wu

Background

Epigenetic regulation has emerged to be the critical steps for tumorigenesis and metastasis. Multiple histone methyltransferase and demethylase have been implicated as tumor suppressors or oncogenes recently. But the key epigenomic events in cancer cell transformation still remain poorly understood.

Conclusions

Our study demonstrates reduction of histones H3K9 me2 and me3, and elevation of KDM3A/JMJD1A as important events for breast cancer, and illustrates the dynamic epigenomic mechanisms during breast cancer transformation.

Methods

A breast cancer transformation model was established via stably expressing three oncogenes in primary breast epithelial cells. Chromatin immunoprecipitation followed by the next-generation sequencing of histone methylations was performed to determine epigenetic events during transformation. Western blot, quantitative RT-PCR, and immunostaining were used to determine gene expression in cells and tissues.

Results

Histones H3K9me2 and me3, two repressive marks of transcription, decrease in in vitro breast cancer cell model and in vivo clinical tissues. A survey of enzymes related with H3K9 methylation indicated that KDM3A/JMJD1A, a demethylase for H3K9me1 and me2, gradually increases during cancer transformation and is elevated in patient tissues. KDM3A/JMJD1A deficiency impairs the growth of tumors in nude mice and transformed cell lines. Genome-wide ChIP-seq analysis reveals that the boundaries of decreased H3K9me2 large organized chromatin K9 modifications (LOCKs) are enriched with cancer-related genes, such as MYC and PAX3. Further studies show that KDM3A/JMJD1A directly binds to these oncogenes and regulates their transcription by removing H3K9me2 mark. Conclusions: Our study demonstrates reduction of histones H3K9 me2 and me3, and elevation of KDM3A/JMJD1A as important events for breast cancer, and illustrates the dynamic epigenomic mechanisms during breast cancer transformation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。