Investigation of Liver X Receptor Gene Variants and Oxysterol Dysregulation in Autism Spectrum Disorder

自闭症谱系障碍中肝脏 X 受体基因变异和氧固醇失调的研究

阅读:5
作者:Tuğba Menteşe Babayiğit, Güvem Gümüş-Akay, Merve Çikili Uytun, Özlem Doğan, Muhittin A Serdar, Gökçe Yağmur Efendi, Ayşe Gökçe Erman, Esra Yürümez, Didem Behice Öztop

Abstract

The NR1H2 gene produces the Liver X Receptor Beta (LXRB) protein, which is crucial for brain cholesterol metabolism and neuronal development. However, its involvement in autism spectrum disorder (ASD) remains largely unexplored, aside from animal studies. This study is the first to explore the potential link between autism and rs2695121/rs17373080 single nucleotide polymorphisms (SNPs) in the regulatory regions of NR1H2, known for their association with neuropsychiatric functions. Additionally, we assessed levels of oxysterols (24-Hydroxycholesterol, 25-Hydroxycholesterol, 27-Hydroxycholesterol), crucial ligands of LXR, and lipid profiles. Our cohort comprised 107 children with ASD and 103 healthy children aged 2-18 years. Clinical assessment tools included the Childhood Autism Rating Scale, Autistic Behavior Checklist, and Repetitive Behavior Scale-Revised. Genotyping for SNPs was conducted using PCR-RFLP. Lipid profiles were analyzed with Beckman Coulter kits, while oxysterol levels were determined through liquid chromatography-tandem mass spectrometry. Significantly higher total cholesterol (p = 0.003), LDL (p = 0.008), and triglyceride (p < 0.001) levels were observed in the ASD group. 27-Hydroxycholesterol levels were markedly lower in the ASD group (p ≤ 0.001). ROC analysis indicated the potential of 27-Hydroxycholesterol to discriminate ASD diagnosis. The SNP genotype and allele frequencies were similar in both groups (p > 0.05). Our findings suggest that disturbances in oxysterol metabolism, previously linked to neurodegeneration, may constitute a risk factor for ASD and contribute to its heterogeneous phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。