In Vitro Gastrointestinal Digestion of Various Sweet Potato Leaves: Polyphenol Profiles, Bioaccessibility and Bioavailability Elucidation

各种红薯叶的体外胃肠消化:多酚概况、生物可及性和生物利用度阐明

阅读:6
作者:Junren Wen, Yong Sui, Jianbin Shi, Sha Cai, Tian Xiong, Fang Cai, Lei Zhou, Shuyi Li, Xin Mei

Abstract

The chemical composition discrepancies of five sweet potato leaves (SPLs) and their phenolic profile variations during in vitro digestion were investigated. The results indicated that Ecaishu No. 10 (EC10) provided better retention capacity for phenolic compounds after drying. Furthermore, polyphenols were progressively released from the matrix as the digestion process proceeded. The highest bioaccessibility of polyphenols was found in EC10 intestinal chyme at 48.47%. For its phenolic profile, 3-, 4-, and 5-monosubstituted caffeoyl quinic acids were 9.75%, 57.39%, and 79.37%, respectively, while 3,4-, 3,5-, and 4,5-disubstituted caffeoyl quinic acids were 6.55, 0.27 and 13.18%, respectively. In contrast, the 3,4-, 3,5-, 4,5-disubstituted caffeoylquinic acid in the intestinal fluid after dialysis bag treatment was 62.12%, 79.12%, and 62.98%, respectively, which resulted in relatively enhanced bioactivities (DPPH, 10.51 μmol Trolox/g; FRAP, 8.89 μmol Trolox/g; ORAC, 7.32 μmol Trolox/g; IC50 for α-amylase, 19.36 mg/g; IC50 for α-glucosidase, 25.21 mg/g). In summary, desirable phenolic acid release characteristics and bioactivity of EC10 were observed in this study, indicating that it has potential as a functional food ingredient, which is conducive to the exploitation of the sweet potato processing industry from a long-term perspective.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。