Role of miR-31 and SATB2 in arsenic-induced malignant BEAS-2B cell transformation

miR-31和SATB2在砷诱导的BEAS-2B细胞恶性转化中的作用

阅读:4
作者:Qiao Yi Chen, Jinquan Li, Hong Sun, Feng Wu, Yusha Zhu, Thomas Kluz, Ashley Jordan, Thomas DesMarais, Xiaoru Zhang, Anthony Murphy, Max Costa

Abstract

Arsenic is a naturally occurring and highly potent metalloid known to elicit serious public health concerns. Today, approximately 200 million people around the globe are exposed to arsenic-contaminated drinking water at levels greater than the World Health Organization's recommended limit of 10 parts per billion. As a class I human carcinogen, arsenic exposure is known to elicit various cancers, including lung, skin, liver, and kidney. Current evidence suggests that arsenic is capable of inducing both genotoxic and cytotoxic injury, as well as activating epigenetic pathways to induce carcinogenesis. Our study identifies a novel pathway that is implicated in arsenic-induced carcinogenesis. Arsenic down-regulated miRNA-31 and the release of this inhibition caused overexpression of special AT-rich sequence-binding protein 2 (SATB2). Arsenic is known to disrupt miRNA expression, and here we report for the first time that arsenic is capable of inhibiting miR-31 expression. As a direct downstream target of miR-31, SATB2 is a prominent transcription factor, and nuclear matrix binding protein implicated in many types of human diseases including lung cancer. Results from this study show that arsenic induces the overexpressing SATB2 by inhibiting miR-31 expression, which blocks the translation of SATB2 mRNA, since levels of SATB2 mRNA remain the same but protein levels decrease. Overexpression of SATB2 induces malignant transformation of human bronchial epithelial (BEAS-2B) cells indicating the importance of the expression of miR-31 in preventing carcinogenesis by suppressing SATB2 protein levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。