Intraarticular injection of SHP2 inhibitor SHP099 promotes the repair of rabbit full-thickness cartilage defect

关节腔内注射SHP2抑制剂SHP099促进兔全层软骨缺损修复

阅读:5
作者:Ziying Sun, Xingquan Xu, Zhongyang Lv, Jiawei Li, Tianshu Shi, Heng Sun, Kuoyang Sun, Guihua Tan, Wenqiang Yan, Yannick Xiaofan Yang, Rui Wu, Jia Xu, Hu Guo, Qing Jiang, Dongquan Shi

Background

Cartilage repair has been a challenge in the field of orthopaedics for decades, highlighting the significance of investigating potential therapeutic drugs. In this study, we explored the effect of the SHP2 inhibitor SHP099, a small-molecule drug, on cartilage repair.

Conclusion

SHP099 promotes the repair of rabbit full-thickness cartilage defects, representing a potential therapeutic drug for cartilage repair. The translational potential of this article: This study provides evidence that SHP2 inhibition promotes chondrogenesis and the repair of cartilage in defect area, which could be a novel therapeutic approach for cartilage repair.

Methods

Human synovial mesenchymal stem cells (SMSCs) were isolated, and their three-way differentiation potential was examined. After treatment with chondrogenic medium, the chondrogenic effect of SHP099 on SMSCs was examined by western blot, qPCR, and immunofluorescence (IF). Micro-mass culture was also used to detect the effect of SHP099. To explore the chondrogenic effects of SHP099 in vivo, full-thickness cartilage defects with microfractures were constructed in the right femoral trochlea of New Zealand White rabbits. Intraarticular injection of SHP099 or normal saline was performed twice a week for 6 weeks. Cartilage repair was evaluated by haematoxylin and eosin (HE) staining and safranin O/fast green staining. Immunohistochemistry (IHC) for collagen II (COL2) was also conducted to verify the abundance of cartilage extracellular matrix after SHP099 treatment. The mechanism involving yes-associated protein (YAP) and WNT signalling was investigated in vitro.

Results

SMSCs isolated from human synovium have optimal multi-differentiation potential. SHP099 increased chondrogenic marker (SOX9, COL2) expression and decreased hypertrophic marker (COL10, RUNX2) expression in SMSCs. In micro-mass culture, the SHP099-induced cartilage tissues had a better result of Safranin O and Toluidine blue staining and are enriched in cartilage-specific collagen II. Inhibition of YAP and WNT signalling was also observed. Moreover, compared to the normal saline group at 6 weeks, intraarticular injection of SHP099 resulted in better defect filling, forming increased hyaline cartilage-like tissue with higher levels of glycosaminoglycan (GAG) and COL2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。