Regulation and Role of Adiponectin Secretion in Rat Ovarian Granulosa Cells

大鼠卵巢颗粒细胞脂联素分泌的调控及作用

阅读:6
作者:Yue Zhou, Shuhao Zhang, Yurong Jia, Xi Wang, Yuning Liu, Haolin Zhang, Zhengrong Yuan, Yingying Han, Qiang Weng

Abstract

Adiponectin is an important adipokine involved in glucose and lipid metabolism, but its secretion and potential role in regulating glucose utilization during ovarian development remains unclear. This study aims to investigate the mechanism and effects of follicle-stimulating hormones (FSHs) on adiponectin secretion and its following impact on glucose transport in the granulosa cells of rat ovaries. A range of experimental techniques were utilized to test our research, including immunoblotting, immunohistochemistry, immunofluorescence, ELISA, histological staining, real-time quantitative PCR, and transcriptome analysis. The immunohistochemistry results indicated that adiponectin was primarily located in the granulosa cells of rat ovaries. In primary granulosa cells cultured in vitro, both Western blot and immunofluorescence assays demonstrated that FSH significantly induced adiponectin secretion within 2 h of incubation, primarily via the PKA signaling pathway rather than the PI3K/AKT pathway. Concurrently, the addition of the AdipoR1/AdipoR2 dual agonist AdipoRon to the culture medium significantly stimulated the protein expression of GLUT1 in rat granulosa cells, resulting in enhanced glucose absorption. Consistent with these in vitro findings, rats injected with eCG (which shares structural and functional similarities with FSH) exhibited significantly increased adiponectin levels in both the ovaries and blood. Moreover, there was a notable elevation in mRNA and protein levels of AdipoRs and GLUTs following eCG administration. Transcriptomic analysis further revealed a positive correlation between the expression of the intraovarian adiponectin system and glucose transporter. The present study represents a novel investigation, demonstrating that FSH stimulates adiponectin secretion in ovarian granulosa cells through the PKA signaling pathway. This mechanism potentially influences glucose transport (GLUT1) and utilization within the ovaries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。